Exercise 6

Show that

$$
\int_{0}^{\infty} \frac{d x}{\sqrt{x}\left(x^{2}+1\right)}=\frac{\pi}{\sqrt{2}}
$$

by integrating an appropriate branch of the multiple-valued function

$$
f(z)=\frac{z^{-1 / 2}}{z^{2}+1}=\frac{e^{(-1 / 2) \log z}}{z^{2}+1}
$$

over (a) the indented path in Fig. 101, Sec. 82; (b) the closed contour in Fig. 103, Sec. 84.

Solution

Part (a)
In order to evaluate this integral, consider the given function in the complex plane $f(z)$ and the contour in Fig. 101. Singularities occur where the denominator is equal to zero.

$$
\begin{gathered}
z^{2}+1=0 \\
z= \pm i
\end{gathered}
$$

The singular point of interest to us is the one that lies within the closed contour, $z=i$. Since $z^{-1 / 2}$ can be written in terms of $\log z$, a branch cut for the function needs to be chosen.

$$
z^{-1 / 2}=\exp \left(-\frac{1}{2} \log z\right)
$$

We choose it to be the axis of negative imaginary numbers.

$$
=\exp \left[-\frac{1}{2}(\ln r+i \theta)\right], \quad\left(|z|>0,-\frac{\pi}{2}<\theta<\frac{3 \pi}{2}\right),
$$

where $r=|z|$ is the magnitude of z and $\theta=\arg z$ is the argument of z.

Figure 1: This is Fig. 101 with the singularity at $z=i$ marked. The squiggly line represents the branch cut $(|z|>0,-\pi / 2<\theta<3 \pi / 2)$.

According to Cauchy's residue theorem, the integral of $z^{-1 / 2} /\left(z^{2}+1\right)$ around the closed contour is equal to $2 \pi i$ times the sum of the residues at the enclosed singularities.

$$
\oint_{C} \frac{z^{-1 / 2}}{z^{2}+1} d z=2 \pi i \operatorname{Res}_{z=i} \frac{z^{-1 / 2}}{z^{2}+1}
$$

This closed loop integral is the sum of four integrals, one over each arc in the loop.

$$
\int_{L_{1}} \frac{z^{-1 / 2}}{z^{2}+1} d z+\int_{L_{2}} \frac{z^{-1 / 2}}{z^{2}+1} d z+\int_{C_{\rho}} \frac{z^{-1 / 2}}{z^{2}+1} d z+\int_{C_{R}} \frac{z^{-1 / 2}}{z^{2}+1} d z=2 \pi i \operatorname{Res}_{z=i} \frac{z^{-1 / 2}}{z^{2}+1}
$$

The parameterizations for the arcs are as follows.

$$
\begin{array}{llll}
L_{1}: & z=r e^{i 0}, & r=\rho & \rightarrow \\
L_{2}: & z=r e^{i \pi}, & r=R \quad \rightarrow \quad r=\rho \\
C_{\rho}: & z=\rho e^{i \theta}, & \theta=\pi \quad \rightarrow \quad \theta=0 \\
C_{R}: & z=R e^{i \theta}, & \theta=0 \quad \rightarrow \quad \theta=\pi
\end{array}
$$

As a result,

$$
\begin{aligned}
2 \pi i \operatorname{Res}_{z=i} \frac{z^{-1 / 2}}{z^{2}+1} & =\int_{\rho}^{R} \frac{\left(r e^{i 0}\right)^{-1 / 2}}{\left(r e^{i 0}\right)^{2}+1}\left(d r e^{i 0}\right)+\int_{R}^{\rho} \frac{\left(r e^{i \pi}\right)^{-1 / 2}}{\left(r e^{i \pi}\right)^{2}+1}\left(d r e^{i \pi}\right)+\int_{C_{\rho}} \frac{z^{-1 / 2}}{z^{2}+1} d z+\int_{C_{R}} \frac{z^{-1 / 2}}{z^{2}+1} d z \\
& =\int_{\rho}^{R} \frac{r^{-1 / 2}}{r^{2}+1} d r+\int_{R}^{\rho} \frac{r^{-1 / 2} e^{-i \pi / 2}}{(-r)^{2}+1}(-d r)+\int_{C_{\rho}} \frac{z^{-1 / 2}}{z^{2}+1} d z+\int_{C_{R}} \frac{z^{-1 / 2}}{z^{2}+1} d z \\
& =\int_{\rho}^{R} \frac{r^{-1 / 2}}{r^{2}+1} d r+\int_{\rho}^{R} \frac{r^{-1 / 2} e^{-i \pi / 2}}{r^{2}+1} d r+\int_{C_{\rho}} \frac{z^{-1 / 2}}{z^{2}+1} d z+\int_{C_{R}} \frac{z^{-1 / 2}}{z^{2}+1} d z \\
& =\left(1+e^{-i \pi / 2}\right) \int_{\rho}^{R} \frac{r^{-1 / 2}}{r^{2}+1} d r+\int_{C_{\rho}} \frac{z^{-1 / 2}}{z^{2}+1} d z+\int_{C_{R}} \frac{z^{-1 / 2}}{z^{2}+1} d z .
\end{aligned}
$$

Take the limit now as $\rho \rightarrow 0$ and $R \rightarrow \infty$. The integral over C_{ρ} tends to zero, and the integral over C_{R} tends to zero. Proof for these statements will be given at the end.

$$
\left(1+e^{-i \pi / 2}\right) \int_{0}^{\infty} \frac{r^{-1 / 2}}{r^{2}+1} d r=2 \pi i \operatorname{Res}_{z=i} \frac{z^{-1 / 2}}{z^{2}+1}
$$

Writing the denominator as $z^{2}+1=(z+i)(z-i)$, we see that the multiplicity of the $z-i$ factor is 1 . Consequently, the residue at $z=i$ can be calculated by

$$
\operatorname{Res}_{z=i} \frac{z^{-1 / 2}}{z^{2}+1}=\phi(i),
$$

where $\phi(z)$ is the same function as $f(z)$ without the $z-i$ factor.

$$
\phi(z)=\frac{z^{-1 / 2}}{z+i} \Rightarrow \phi(i)=\frac{i^{-1 / 2}}{2 i}=\frac{\left(e^{i \pi / 2}\right)^{-1 / 2}}{2 i}=\frac{e^{-i \pi / 4}}{2 i}
$$

So then

$$
\operatorname{Res}_{z=i} \frac{z^{-1 / 2}}{z^{2}+1}=\frac{e^{-i \pi / 4}}{2 i}
$$

and

$$
\begin{aligned}
\left(1+e^{-i \pi / 2}\right) \int_{0}^{\infty} \frac{r^{-1 / 2}}{r^{2}+1} d r & =2 \pi i\left(\frac{e^{-i \pi / 4}}{2 i}\right) \\
& =\pi e^{-i \pi / 4}
\end{aligned}
$$

Divide both sides by $1+e^{-i \pi / 2}$.

$$
\begin{aligned}
\int_{0}^{\infty} \frac{r^{-1 / 2}}{r^{2}+1} d r & =\pi \frac{e^{-i \pi / 4}}{1+e^{-i \pi / 2}} \\
& =\pi \frac{1}{e^{i \pi / 4}+e^{-i \pi / 4}} \\
& =\pi \frac{1}{2 \cos (\pi / 4)} \\
& =\pi \frac{1}{\sqrt{2}}
\end{aligned}
$$

Therefore, changing the dummy integration variable to x,

$$
\int_{0}^{\infty} \frac{1}{\sqrt{x}\left(x^{2}+1\right)} d x=\frac{\pi}{\sqrt{2}} .
$$

The Integral Over C_{ρ}

Our aim here is to show that the integral over C_{ρ} tends to zero in the limit as $\rho \rightarrow 0$. The parameterization of the small semicircular arc in Figure 1 is $z=\rho e^{i \theta}$, where θ goes from π to 0 .

$$
\begin{aligned}
\int_{C_{\rho}} \frac{z^{-1 / 2}}{z^{2}+1} d z & =\int_{\pi}^{0} \frac{\left(\rho e^{i \theta}\right)^{-1 / 2}}{\left(\rho e^{i \theta}\right)^{2}+1}\left(\rho i e^{i \theta} d \theta\right) \\
& =\int_{\pi}^{0} \frac{\rho^{1 / 2} e^{i \theta / 2}}{\rho^{2} e^{2 i \theta}+1}(i d \theta)
\end{aligned}
$$

Take the limit of both sides as $\rho \rightarrow 0$.

$$
\lim _{\rho \rightarrow 0} \int_{C_{\rho}} \frac{z^{-1 / 2}}{z^{2}+1} d z=\lim _{\rho \rightarrow 0} \int_{\pi}^{0} \frac{\rho^{1 / 2} e^{i \theta / 2}}{\rho^{2} e^{2 i \theta}+1}(i d \theta)
$$

The limits of integration are constant, so the limit may be brought inside the integral.

$$
\lim _{\rho \rightarrow 0} \int_{C_{\rho}} \frac{z^{-1 / 2}}{z^{2}+1} d z=\int_{\pi}^{0} \lim _{\rho \rightarrow 0} \frac{\rho^{1 / 2} e^{i \theta / 2}}{\rho^{2} e^{2 i \theta}+1}(i d \theta)
$$

Because of $\rho^{1 / 2}$ in the numerator, the limit is zero. Therefore,

$$
\lim _{\rho \rightarrow 0} \int_{C_{\rho}} \frac{z^{-1 / 2}}{z^{2}+1} d z=0
$$

The Integral Over C_{R}

Our aim here is to show that the integral over C_{R} tends to zero in the limit as $R \rightarrow \infty$. The parameterization of the large semicircular arc in Figure 1 is $z=R e^{i \theta}$, where θ goes from 0 to π.

$$
\begin{aligned}
\int_{C_{R}} \frac{z^{-1 / 2}}{z^{2}+1} d z & =\int_{0}^{\pi} \frac{\left(R e^{i \theta}\right)^{-1 / 2}}{\left(R e^{i \theta}\right)^{2}+1}\left(R^{i \theta} d \theta\right) \\
& =\int_{0}^{\pi} \frac{R^{1 / 2} e^{i \theta / 2}}{R^{2} e^{2 i \theta}+1}(i d \theta) \\
& =\int_{0}^{\pi} \frac{R^{1 / 2} e^{i \theta / 2}}{R^{2}\left(e^{2 i \theta}+\frac{1}{R^{2}}\right)}(i d \theta) \\
& =\int_{0}^{\pi} \frac{1}{R^{3 / 2}} \frac{e^{i \theta / 2}}{\left(e^{2 i \theta}+\frac{1}{R^{2}}\right)}(i d \theta)
\end{aligned}
$$

Take the limit of both sides as $R \rightarrow \infty$. Since the limits of integration are constant, the limit may be brought inside the integral.

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} \frac{z^{-1 / 2}}{z^{2}+1} d z=\int_{0}^{\pi} \lim _{R \rightarrow \infty} \frac{1}{R^{3 / 2}} \frac{e^{i \theta / 2}}{\left(e^{2 i \theta}+\frac{1}{R^{2}}\right)}(i d \theta)
$$

Because of $R^{3 / 2}$ in the denominator, the limit is zero. Therefore,

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} \frac{z^{-1 / 2}}{z^{2}+1} d z=0
$$

Part (b)

In order to evaluate this integral, consider the given function in the complex plane $f(z)$ and the contour in Fig. 101. Singularities occur where the denominator is equal to zero.

$$
\begin{gathered}
z^{2}+1=0 \\
z= \pm i
\end{gathered}
$$

Since $z^{-1 / 2}$ can be written in terms of $\log z$, a branch cut for the function needs to be chosen.

$$
z^{-1 / 2}=\exp \left(-\frac{1}{2} \log z\right)
$$

We choose it to be the axis of positive real numbers.

$$
=\exp \left[-\frac{1}{2}(\ln r+i \theta)\right], \quad(|z|>0,0<\theta<2 \pi),
$$

where $r=|z|$ is the magnitude of z and $\theta=\arg z$ is the argument of z.

Figure 2: This is essentially Fig. 103 with the singularities at $z=-i$ and $z=i$ marked. The squiggly line represents the branch cut $(|z|>0,0<\theta<2 \pi)$.

According to Cauchy's residue theorem, the integral of $z^{-1 / 2} /\left(z^{2}+1\right)$ around the closed contour is equal to $2 \pi i$ times the sum of the residues at the enclosed singularities.

$$
\oint_{C} \frac{z^{-1 / 2}}{z^{2}+1} d z=2 \pi i\left(\operatorname{Res}_{z=-i} \frac{z^{-1 / 2}}{z^{2}+1}+\underset{z=i}{\operatorname{Res}} \frac{z^{-1 / 2}}{z^{2}+1}\right)
$$

This closed loop integral is the sum of four integrals, one over each arc in the loop.

$$
\begin{align*}
& \int_{L_{1}} \frac{z^{-1 / 2}}{z^{2}+1} d z+\int_{L_{2}} \frac{z^{-1 / 2}}{z^{2}+1} d z+\int_{C_{\rho}} \frac{z^{-1 / 2}}{z^{2}+1} d z+\int_{C_{R}} \frac{z^{-1 / 2}}{z^{2}+1} d z \\
& \quad=2 \pi i\left(\underset{z=-i}{\operatorname{Res}} \frac{z^{-1 / 2}}{z^{2}+1}+\underset{z=i}{\operatorname{Res}} \frac{z^{-1 / 2}}{z^{2}+1}\right) \tag{1}
\end{align*}
$$

The parameterizations for the arcs are as follows.

$$
\begin{array}{llll}
L_{1}: & z=r e^{i 0}, & r=\rho \quad \rightarrow \quad r=R \\
L_{2}: & z=r e^{i 2 \pi}, & r=R \quad \rightarrow \quad r=\rho \\
C_{\rho}: & z=\rho e^{i \theta}, & \theta=2 \pi \quad \rightarrow \quad \theta=0 \\
C_{R}: & z=R e^{i \theta}, & \theta=0 \quad \rightarrow \quad \theta=2 \pi
\end{array}
$$

As a result,

$$
\begin{aligned}
\int_{L_{1}} \frac{z^{-1 / 2}}{z^{2}+1} d z+\int_{L_{2}} \frac{z^{-1 / 2}}{z^{2}+1} d z & =\int_{\rho}^{R} \frac{\left(r e^{i 0}\right)^{-1 / 2}}{\left(r e^{i 0}\right)^{2}+1}\left(d r e^{i 0}\right)+\int_{R}^{\rho} \frac{\left(r e^{i 2 \pi}\right)^{-1 / 2}}{\left(r e^{i 2 \pi}\right)^{2}+1}\left(d r e^{i 2 \pi}\right) \\
& =\int_{\rho}^{R} \frac{r^{-1 / 2}}{r^{2}+1} d r+\int_{R}^{\rho} \frac{r^{-1 / 2} e^{-i \pi}}{r^{2}+1} d r \\
& =\int_{\rho}^{R} \frac{r^{-1 / 2}}{r^{2}+1} d r+\int_{\rho}^{R} \frac{r^{-1 / 2}}{r^{2}+1} d r \\
& =2 \int_{\rho}^{R} \frac{r^{-1 / 2}}{r^{2}+1} d r .
\end{aligned}
$$

Substitute this formula into equation (1).

$$
2 \int_{\rho}^{R} \frac{r^{-1 / 2}}{r^{2}+1} d r+\int_{C_{\rho}} \frac{z^{-1 / 2}}{z^{2}+1} d z+\int_{C_{R}} \frac{z^{-1 / 2}}{z^{2}+1} d z=2 \pi i\left(\operatorname{Res}_{z=-i} \frac{z^{-1 / 2}}{z^{2}+1}+\underset{z=i}{\operatorname{Res}} \frac{z^{-1 / 2}}{z^{2}+1}\right)
$$

Take the limit now as $\rho \rightarrow 0$ and $R \rightarrow \infty$. The integral over C_{ρ} tends to zero, and the integral over C_{R} tends to zero. Proof for these statements will be given at the end.

$$
2 \int_{0}^{\infty} \frac{r^{-1 / 2}}{r^{2}+1} d r=2 \pi i\left(\operatorname{Res}_{z=-i} \frac{z^{-1 / 2}}{z^{2}+1}+\operatorname{Res}_{z=i} \frac{z^{-1 / 2}}{z^{2}+1}\right)
$$

Writing the denominator as $z^{2}+1=(z+i)(z-i)$, we see that the multiplicities of the $z-i$ and $z+i$ factors are both 1 . Consequently, the residues at $z=-i$ and $z=i$ can be calculated by

$$
\begin{aligned}
& \operatorname{Res}_{z=-i} \frac{z^{-1 / 2}}{z^{2}+1}=\phi_{1}(-i) \\
& \operatorname{Res}_{z=i} \frac{z^{-1 / 2}}{z^{2}+1}=\phi_{2}(i)
\end{aligned}
$$

where $\phi_{1}(z)$ and $\phi_{2}(z)$ are the same function as $f(z)$ without the $z+i$ and $z-i$ factors, respectively.

$$
\begin{aligned}
& \phi_{1}(z)=\frac{z^{-1 / 2}}{z-i} \Rightarrow \phi_{1}(-i)=\frac{(-i)^{-1 / 2}}{-2 i}=\frac{\left(e^{i 3 \pi / 2}\right)^{-1 / 2}}{-2 i}=-\frac{e^{-i 3 \pi / 4}}{2 i} \\
& \phi_{2}(z)=\frac{z^{-1 / 2}}{z+i} \Rightarrow \phi_{2}(i)=\frac{i^{-1 / 2}}{2 i}=\frac{\left(e^{i \pi / 2}\right)^{-1 / 2}}{2 i}=\frac{e^{-i \pi / 4}}{2 i}
\end{aligned}
$$

So then

$$
\begin{aligned}
& \operatorname{Res}_{z=-i} \frac{z^{-1 / 2}}{z^{2}+1}=-\frac{e^{-i 3 \pi / 4}}{2 i} \\
& \operatorname{Res}_{z=i}^{z^{-1 / 2}} \frac{e^{-i \pi / 4}}{z^{2}+1}=\frac{2 i}{2}
\end{aligned}
$$

and

$$
\begin{aligned}
2 \int_{0}^{\infty} \frac{r^{-1 / 2}}{r^{2}+1} d r & =2 \pi i\left(-\frac{e^{-i 3 \pi / 4}}{2 i}+\frac{e^{-i \pi / 4}}{2 i}\right) \\
& =\pi\left(e^{-i \pi / 4}-e^{-i 3 \pi / 4}\right) \\
& =\pi\left[\cos \frac{\pi}{4}-i \sin \frac{\pi}{4}-\left(\cos \frac{3 \pi}{4}-i \sin \frac{3 \pi}{4}\right)\right] \\
& =\pi\left[\frac{\sqrt{2}}{2}-i \frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{2}}{2}-i \frac{\sqrt{2}}{2}\right)\right] \\
& =\pi \sqrt{2} .
\end{aligned}
$$

Divide both sides by 2 .

$$
\int_{0}^{\infty} \frac{r^{-1 / 2}}{r^{2}+1} d r=\frac{\pi}{\sqrt{2}}
$$

Therefore, changing the dummy integration variable to x,

$$
\int_{0}^{\infty} \frac{1}{\sqrt{x}\left(x^{2}+1\right)} d x=\frac{\pi}{\sqrt{2}} .
$$

The Integral Over C_{ρ}

Our aim here is to show that the integral over C_{ρ} tends to zero in the limit as $\rho \rightarrow 0$. The parameterization of the small circular arc in Figure 2 is $z=\rho e^{i \theta}$, where θ goes from 2π to 0 .

$$
\begin{aligned}
\int_{C_{\rho}} \frac{z^{-1 / 2}}{z^{2}+1} d z & =\int_{2 \pi}^{0} \frac{\left(\rho e^{i \theta}\right)^{-1 / 2}}{\left(\rho e^{i \theta}\right)^{2}+1}\left(\rho i e^{i \theta} d \theta\right) \\
& =\int_{2 \pi}^{0} \frac{\rho^{1 / 2} e^{i \theta / 2}}{\rho^{2} e^{2 i \theta}+1}(i d \theta)
\end{aligned}
$$

Take the limit of both sides as $\rho \rightarrow 0$.

$$
\lim _{\rho \rightarrow 0} \int_{C_{\rho}} \frac{z^{-1 / 2}}{z^{2}+1} d z=\lim _{\rho \rightarrow 0} \int_{2 \pi}^{0} \frac{\rho^{1 / 2} e^{i \theta / 2}}{\rho^{2} e^{2 i \theta}+1}(i d \theta)
$$

The limits of integration are constant, so the limit may be brought inside the integral.

$$
\lim _{\rho \rightarrow 0} \int_{C_{\rho}} \frac{z^{-1 / 2}}{z^{2}+1} d z=\int_{2 \pi}^{0} \lim _{\rho \rightarrow 0} \frac{\rho^{1 / 2} e^{i \theta / 2}}{\rho^{2} e^{2 i \theta}+1}(i d \theta)
$$

Because of $\rho^{1 / 2}$ in the numerator, the limit is zero. Therefore,

$$
\lim _{\rho \rightarrow 0} \int_{C_{\rho}} \frac{z^{-1 / 2}}{z^{2}+1} d z=0
$$

The Integral Over C_{R}

Our aim here is to show that the integral over C_{R} tends to zero in the limit as $R \rightarrow \infty$. The parameterization of the large circular arc in Figure 2 is $z=R e^{i \theta}$, where θ goes from 0 to 2π.

$$
\begin{aligned}
\int_{C_{R}} \frac{z^{-1 / 2}}{z^{2}+1} d z & =\int_{0}^{2 \pi} \frac{\left(R e^{i \theta}\right)^{-1 / 2}}{\left(R e^{i \theta}\right)^{2}+1}\left(R^{i \theta} d \theta\right) \\
& =\int_{0}^{2 \pi} \frac{R^{1 / 2} e^{i \theta / 2}}{R^{2} e^{2 i \theta}+1}(i d \theta) \\
& =\int_{0}^{2 \pi} \frac{R^{1 / 2} e^{i \theta / 2}}{R^{2}\left(e^{2 i \theta}+\frac{1}{R^{2}}\right)}(i d \theta) \\
& =\int_{0}^{2 \pi} \frac{1}{R^{3 / 2}} \frac{e^{i \theta / 2}}{\left(e^{2 i \theta}+\frac{1}{R^{2}}\right)}(i d \theta)
\end{aligned}
$$

Take the limit of both sides as $R \rightarrow \infty$. Since the limits of integration are constant, the limit may be brought inside the integral.

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} \frac{z^{-1 / 2}}{z^{2}+1} d z=\int_{0}^{2 \pi} \lim _{R \rightarrow \infty} \frac{1}{R^{3 / 2}} \frac{e^{i \theta / 2}}{\left(e^{2 i \theta}+\frac{1}{R^{2}}\right)}(i d \theta)
$$

Because of $R^{3 / 2}$ in the denominator, the limit is zero. Therefore,

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} \frac{z^{-1 / 2}}{z^{2}+1} d z=0
$$

