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Exercise 6

Show that ˆ ∞
0

dx√
x(x2 + 1)

=
π√
2

by integrating an appropriate branch of the multiple-valued function

f(z) =
z−1/2

z2 + 1
=
e(−1/2) log z

z2 + 1

over (a) the indented path in Fig. 101, Sec. 82; (b) the closed contour in Fig. 103, Sec. 84.

Solution

Part (a)

In order to evaluate this integral, consider the given function in the complex plane f(z) and the
contour in Fig. 101. Singularities occur where the denominator is equal to zero.

z2 + 1 = 0

z = ±i

The singular point of interest to us is the one that lies within the closed contour, z = i. Since
z−1/2 can be written in terms of log z, a branch cut for the function needs to be chosen.

z−1/2 = exp

(
−1

2
log z

)
We choose it to be the axis of negative imaginary numbers.

= exp

[
−1

2
(ln r + iθ)

]
,

(
|z| > 0, −π

2
< θ <

3π

2

)
,

where r = |z| is the magnitude of z and θ = arg z is the argument of z.

Figure 1: This is Fig. 101 with the singularity at z = i marked. The squiggly line represents the
branch cut (|z| > 0, −π/2 < θ < 3π/2).
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According to Cauchy’s residue theorem, the integral of z−1/2/(z2 + 1) around the closed contour
is equal to 2πi times the sum of the residues at the enclosed singularities.

ffi
C

z−1/2

z2 + 1
dz = 2πiRes

z=i

z−1/2

z2 + 1

This closed loop integral is the sum of four integrals, one over each arc in the loop.

ˆ
L1

z−1/2

z2 + 1
dz +

ˆ
L2

z−1/2

z2 + 1
dz +

ˆ
Cρ

z−1/2

z2 + 1
dz +

ˆ
CR

z−1/2

z2 + 1
dz = 2πiRes

z=i

z−1/2

z2 + 1

The parameterizations for the arcs are as follows.

L1 : z = rei0, r = ρ → r = R

L2 : z = reiπ, r = R → r = ρ

Cρ : z = ρeiθ, θ = π → θ = 0

CR : z = Reiθ, θ = 0 → θ = π

As a result,

2πiRes
z=i

z−1/2

z2 + 1
=

ˆ R

ρ

(rei0)−1/2

(rei0)2 + 1
(dr ei0) +

ˆ ρ

R

(reiπ)−1/2

(reiπ)2 + 1
(dr eiπ) +

ˆ
Cρ

z−1/2

z2 + 1
dz +

ˆ
CR

z−1/2

z2 + 1
dz

=

ˆ R

ρ

r−1/2

r2 + 1
dr +

ˆ ρ

R

r−1/2e−iπ/2

(−r)2 + 1
(−dr) +

ˆ
Cρ

z−1/2

z2 + 1
dz +

ˆ
CR

z−1/2

z2 + 1
dz

=

ˆ R

ρ

r−1/2

r2 + 1
dr +

ˆ R

ρ

r−1/2e−iπ/2

r2 + 1
dr +

ˆ
Cρ

z−1/2

z2 + 1
dz +

ˆ
CR

z−1/2

z2 + 1
dz

= (1 + e−iπ/2)

ˆ R

ρ

r−1/2

r2 + 1
dr +

ˆ
Cρ

z−1/2

z2 + 1
dz +

ˆ
CR

z−1/2

z2 + 1
dz.

Take the limit now as ρ→ 0 and R→∞. The integral over Cρ tends to zero, and the integral
over CR tends to zero. Proof for these statements will be given at the end.

(1 + e−iπ/2)

ˆ ∞
0

r−1/2

r2 + 1
dr = 2πiRes

z=i

z−1/2

z2 + 1

Writing the denominator as z2 + 1 = (z + i)(z − i), we see that the multiplicity of the z − i factor
is 1. Consequently, the residue at z = i can be calculated by

Res
z=i

z−1/2

z2 + 1
= φ(i),

where φ(z) is the same function as f(z) without the z − i factor.

φ(z) =
z−1/2

z + i
⇒ φ(i) =

i−1/2

2i
=

(eiπ/2)−1/2

2i
=
e−iπ/4

2i

So then

Res
z=i

z−1/2

z2 + 1
=
e−iπ/4

2i
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and

(1 + e−iπ/2)

ˆ ∞
0

r−1/2

r2 + 1
dr = 2πi

(
e−iπ/4

2i

)
= πe−iπ/4.

Divide both sides by 1 + e−iπ/2.

ˆ ∞
0

r−1/2

r2 + 1
dr = π

e−iπ/4

1 + e−iπ/2

= π
1

eiπ/4 + e−iπ/4

= π
1

2 cos(π/4)

= π
1√
2

Therefore, changing the dummy integration variable to x,

ˆ ∞
0

1√
x(x2 + 1)

dx =
π√
2
.
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The Integral Over Cρ

Our aim here is to show that the integral over Cρ tends to zero in the limit as ρ→ 0. The
parameterization of the small semicircular arc in Figure 1 is z = ρeiθ, where θ goes from π to 0.

ˆ
Cρ

z−1/2

z2 + 1
dz =

ˆ 0

π

(ρeiθ)−1/2

(ρeiθ)2 + 1
(ρieiθ dθ)

=

ˆ 0

π

ρ1/2eiθ/2

ρ2e2iθ + 1
(i dθ)

Take the limit of both sides as ρ→ 0.

lim
ρ→0

ˆ
Cρ

z−1/2

z2 + 1
dz = lim

ρ→0

ˆ 0

π

ρ1/2eiθ/2

ρ2e2iθ + 1
(i dθ)

The limits of integration are constant, so the limit may be brought inside the integral.

lim
ρ→0

ˆ
Cρ

z−1/2

z2 + 1
dz =

ˆ 0

π
lim
ρ→0

ρ1/2eiθ/2

ρ2e2iθ + 1
(i dθ)

Because of ρ1/2 in the numerator, the limit is zero. Therefore,

lim
ρ→0

ˆ
Cρ

z−1/2

z2 + 1
dz = 0.

The Integral Over CR

Our aim here is to show that the integral over CR tends to zero in the limit as R→∞. The
parameterization of the large semicircular arc in Figure 1 is z = Reiθ, where θ goes from 0 to π.

ˆ
CR

z−1/2

z2 + 1
dz =

ˆ π

0

(Reiθ)−1/2

(Reiθ)2 + 1
(Rieiθ dθ)

=

ˆ π

0

R1/2eiθ/2

R2e2iθ + 1
(i dθ)

=

ˆ π

0

R1/2eiθ/2

R2
(
e2iθ + 1

R2

)(i dθ)
=

ˆ π

0

1

R3/2

eiθ/2(
e2iθ + 1

R2

)(i dθ)
Take the limit of both sides as R→∞. Since the limits of integration are constant, the limit may
be brought inside the integral.

lim
R→∞

ˆ
CR

z−1/2

z2 + 1
dz =

ˆ π

0
lim
R→∞

1

R3/2

eiθ/2(
e2iθ + 1

R2

)(i dθ)
Because of R3/2 in the denominator, the limit is zero. Therefore,

lim
R→∞

ˆ
CR

z−1/2

z2 + 1
dz = 0.
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Part (b)

In order to evaluate this integral, consider the given function in the complex plane f(z) and the
contour in Fig. 101. Singularities occur where the denominator is equal to zero.

z2 + 1 = 0

z = ±i

Since z−1/2 can be written in terms of log z, a branch cut for the function needs to be chosen.

z−1/2 = exp

(
−1

2
log z

)
We choose it to be the axis of positive real numbers.

= exp

[
−1

2
(ln r + iθ)

]
, (|z| > 0, 0 < θ < 2π) ,

where r = |z| is the magnitude of z and θ = arg z is the argument of z.

Figure 2: This is essentially Fig. 103 with the singularities at z = −i and z = i marked. The
squiggly line represents the branch cut (|z| > 0, 0 < θ < 2π).

According to Cauchy’s residue theorem, the integral of z−1/2/(z2 + 1) around the closed contour
is equal to 2πi times the sum of the residues at the enclosed singularities.

ffi
C

z−1/2

z2 + 1
dz = 2πi

(
Res
z=−i

z−1/2

z2 + 1
+ Res

z=i

z−1/2

z2 + 1

)
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This closed loop integral is the sum of four integrals, one over each arc in the loop.

ˆ
L1

z−1/2

z2 + 1
dz +

ˆ
L2

z−1/2

z2 + 1
dz +

ˆ
Cρ

z−1/2

z2 + 1
dz +

ˆ
CR

z−1/2

z2 + 1
dz

= 2πi

(
Res
z=−i

z−1/2

z2 + 1
+ Res

z=i

z−1/2

z2 + 1

)
(1)

The parameterizations for the arcs are as follows.

L1 : z = rei0, r = ρ → r = R

L2 : z = rei2π, r = R → r = ρ

Cρ : z = ρeiθ, θ = 2π → θ = 0

CR : z = Reiθ, θ = 0 → θ = 2π

As a result,ˆ
L1

z−1/2

z2 + 1
dz +

ˆ
L2

z−1/2

z2 + 1
dz =

ˆ R

ρ

(rei0)−1/2

(rei0)2 + 1
(dr ei0) +

ˆ ρ

R

(rei2π)−1/2

(rei2π)2 + 1
(dr ei2π)

=

ˆ R

ρ

r−1/2

r2 + 1
dr +

ˆ ρ

R

r−1/2e−iπ

r2 + 1
dr

=

ˆ R

ρ

r−1/2

r2 + 1
dr +

ˆ R

ρ

r−1/2

r2 + 1
dr

= 2

ˆ R

ρ

r−1/2

r2 + 1
dr.

Substitute this formula into equation (1).

2

ˆ R

ρ

r−1/2

r2 + 1
dr +

ˆ
Cρ

z−1/2

z2 + 1
dz +

ˆ
CR

z−1/2

z2 + 1
dz = 2πi

(
Res
z=−i

z−1/2

z2 + 1
+ Res

z=i

z−1/2

z2 + 1

)
Take the limit now as ρ→ 0 and R→∞. The integral over Cρ tends to zero, and the integral
over CR tends to zero. Proof for these statements will be given at the end.

2

ˆ ∞
0

r−1/2

r2 + 1
dr = 2πi

(
Res
z=−i

z−1/2

z2 + 1
+ Res

z=i

z−1/2

z2 + 1

)
Writing the denominator as z2 + 1 = (z + i)(z − i), we see that the multiplicities of the z − i and
z + i factors are both 1. Consequently, the residues at z = −i and z = i can be calculated by

Res
z=−i

z−1/2

z2 + 1
= φ1(−i)

Res
z=i

z−1/2

z2 + 1
= φ2(i),

where φ1(z) and φ2(z) are the same function as f(z) without the z + i and z − i factors,
respectively.

φ1(z) =
z−1/2

z − i
⇒ φ1(−i) =

(−i)−1/2

−2i
=

(ei3π/2)−1/2

−2i
= −e

−i3π/4

2i

φ2(z) =
z−1/2

z + i
⇒ φ2(i) =

i−1/2

2i
=

(eiπ/2)−1/2

2i
=
e−iπ/4

2i

www.stemjock.com



Churchill Complex Variables 8e: Section 84 - Exercise 6 Page 7 of 8

So then

Res
z=−i

z−1/2

z2 + 1
= −e

−i3π/4

2i

Res
z=i

z−1/2

z2 + 1
=
e−iπ/4

2i

and

2

ˆ ∞
0

r−1/2

r2 + 1
dr = 2πi

(
−e
−i3π/4

2i
+
e−iπ/4

2i

)
= π(e−iπ/4 − e−i3π/4)

= π

[
cos

π

4
− i sin π

4
−
(
cos

3π

4
− i sin 3π

4

)]
= π

[√
2

2
− i
√
2

2
−

(
−
√
2

2
− i
√
2

2

)]
= π
√
2.

Divide both sides by 2. ˆ ∞
0

r−1/2

r2 + 1
dr =

π√
2

Therefore, changing the dummy integration variable to x,

ˆ ∞
0

1√
x(x2 + 1)

dx =
π√
2
.
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The Integral Over Cρ

Our aim here is to show that the integral over Cρ tends to zero in the limit as ρ→ 0. The
parameterization of the small circular arc in Figure 2 is z = ρeiθ, where θ goes from 2π to 0.

ˆ
Cρ

z−1/2

z2 + 1
dz =

ˆ 0

2π

(ρeiθ)−1/2

(ρeiθ)2 + 1
(ρieiθ dθ)

=

ˆ 0

2π

ρ1/2eiθ/2

ρ2e2iθ + 1
(i dθ)

Take the limit of both sides as ρ→ 0.

lim
ρ→0

ˆ
Cρ

z−1/2

z2 + 1
dz = lim

ρ→0

ˆ 0

2π

ρ1/2eiθ/2

ρ2e2iθ + 1
(i dθ)

The limits of integration are constant, so the limit may be brought inside the integral.

lim
ρ→0

ˆ
Cρ

z−1/2

z2 + 1
dz =

ˆ 0

2π
lim
ρ→0

ρ1/2eiθ/2

ρ2e2iθ + 1
(i dθ)

Because of ρ1/2 in the numerator, the limit is zero. Therefore,

lim
ρ→0

ˆ
Cρ

z−1/2

z2 + 1
dz = 0.

The Integral Over CR

Our aim here is to show that the integral over CR tends to zero in the limit as R→∞. The
parameterization of the large circular arc in Figure 2 is z = Reiθ, where θ goes from 0 to 2π.

ˆ
CR

z−1/2

z2 + 1
dz =

ˆ 2π

0

(Reiθ)−1/2

(Reiθ)2 + 1
(Rieiθ dθ)

=

ˆ 2π

0

R1/2eiθ/2

R2e2iθ + 1
(i dθ)

=

ˆ 2π

0

R1/2eiθ/2

R2
(
e2iθ + 1

R2

)(i dθ)
=

ˆ 2π

0

1

R3/2

eiθ/2(
e2iθ + 1

R2

)(i dθ)
Take the limit of both sides as R→∞. Since the limits of integration are constant, the limit may
be brought inside the integral.

lim
R→∞

ˆ
CR

z−1/2

z2 + 1
dz =

ˆ 2π

0
lim
R→∞

1

R3/2

eiθ/2(
e2iθ + 1

R2

)(i dθ)
Because of R3/2 in the denominator, the limit is zero. Therefore,

lim
R→∞

ˆ
CR

z−1/2

z2 + 1
dz = 0.
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